The apprehensions in the graphic registry for the study of the partial derivative
DOI:
https://doi.org/10.18800/educacion.201902.010Keywords:
Apprehensions in the graphic register, display, didactic engineering, didactic situation, partial derivativeAbstract
The objective of this article is to present an extension of the Duval study in relation to the apprehensions in the graphic register of a function of two variables, to analyze a didactic situation and to investigate the articulations of the apprehensions in the study of the partial derivative. Its relevance in the teaching-learning of the Differential Calculus of two variables is wide, since the information that the graph provides is important for the construction of knowledge of functions of two variables. Our research is qualitative, specifically, aspects of the didactic engineering of Michèle Artigue. It was found that the articulation of the apprehensions in the graphic registry, mediated by the Mathematica software, allowed the students to conjecture properties, apply them in optimization problems and adapt to solve these problems geometrically.
Downloads
References
Almouloud, S. (2007). Fundamentos da Didática da Matemática. Curitiba: Universida de Federal do Paraná.
Artigue, M. (1995). Ingeniería Didáctica. En P. Gómez (ed.), Ingeniería Didáctica en Educación Matemática. Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas (pp. 33-59). Bogotá, Colombia: Grupo Editorial Iberoamérica. Recuperado de https://core.ac.uk/download/pdf/12341268.pdf.
Duval, R. (1994). Les différents fonctionnements d’une figure dans une démarche géométrique. Repères-IREM, 17, 121-138. Recuperado de http://www.univ-irem.fr/exemple/reperes/articles/17_article_119.pdf.
Duval, R. (1995). Sémiosis et pensée humaine: registres sémiotiques et apprentissages intellectuels. Berna: Editorial Peter Lang.
Duval, R. (1996). Quel cognitif retenir en didactique des mathématiques? Recherches en Didactique des Mathématiques, 16(3), 349-382.
Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp 3-26). Cuernavaca, México. Recuperado de https://files.eric.ed.gov/fulltext/ED466379.pdf
Duval, R. (2003). Décrire, visualiser ou raisonner: quels apprentissages premiers de l’activité mathématique? Annales de Didactique et de ScienciesCognitives, (8), 13-62.
Duval, R. (2004). Los problemas Fundamentales en el Aprendizaje de la Matemáticas y las Formas Superiores en el Desarrollo Cognitivo. Traducción de Myriam Vega Restrepo. Colombia: Universidad del Valle, Instituto de Educación y Pedagogía, Grupo de Educación Matemática.
Guzmán, M. (1996). El rincón de la pizarra. Ensayos de visualización en análisis matemático. España: Pirámide, S.A.
Ingar, K. (2014). A visualização na Aprendizagem dos Valores Máximos e Mínimos Locais da Função de DuasVariáveisReais. (Tesis doctoral en Educación Matemática). Pontifícia Universidade Católica de São Paulo, São Paulo, Brasil.
Ingar, K. y Silva, M. (2015) A visualização de valores máximos e mínimos de funções de duasvariáveis. En N. Amado y S. Carreira (eds.), Proceedings of the 12th International Conference on Technology in Mathematics Teaching. University of Algarve, Faro, Portugal. Recuperado de https://sapientia.ualg.pt/handle/10400.1/6081.
Kabael, T. (2009). The effects of the function machine on students ‘understanding levels and their image and definition for the concept of function. En Swars, S. L., Stinson, D.W. y Lemons-Smith, S. (eds.), Proceedings of the 31sr annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Atlanta, GA: Georgia, State University, USA.
Kashefi, H., Zaleha, I. y Mohammad, Y. (2010). Obstacles in the Learning of Two-variable Functions through Mathematical Thinking Approach. Procedia Social and Behavioral Sciences, 8, 173-180. https://doi.org/10.1016/j.sbspro.2010.12.024.
Montiel, M., Wilhelmi, M., Vidakovic, D. y Elstak, I. (2009). Using the ontosemiotic approach to identify and analyze mathematical meaning when transiting between different coordinate systems in a multivariate context. Educational Studies in Mathematics, 72(2), 139-160. https://doi.org/10.1007/s10649-009-9184-2
Robert, A (1998). Outils d’analyses des contenus mathématiques à enseigner au lycée et à l’université. Recherches en didactique des mathématiques, 18(2), 139-190.
Thomas, G.B. (2005). Cálculo. Varias variables. México: Pearson Educación. Recuperado de https://www.u-cursos.cl/usuario/7c1c0bd54f14c0722cefc 0fa25ea186d/mi_blog/r/Thomas_Calculo_Varias_Variables_%28Thomas %29_-_11o_Edicion.pdf
Trigueros, M. y Martínez-Planell, R. (2010). Geometrical representations in the learning of two-variable functions. Educational Studies in Mathematics, 73(1), 3-19. https://doi.org/10.1007/s10649-009-9201-5
Trigueros, M. y Martínez-Planell, R. (2011). How are graphs of two variable functions taught? En L. Wiest y T. Lamberg (eds.), Proceedings of the 33rd Annual Conference of the North America Chapter of the International Group for the Psychology of Mathematics Education. Reno, Nevada, USA. Recuperado de https://www.pmena.org/pmenaproceedings/PMENA%2033%202011%20Proceedings.pdf.
Yerushalmy, M. (1997). Designing representations: Reasonning about functions of two variables. Journal for Research in Mathematics Education, 28(4), 431-466. https://doi.org/10.2307/749682
Zimmermann, W. y Cunningham, S. (eds.) (1991). Visualization in Teaching and Learning Mathematics, MAA Notes 19.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Educacion

This work is licensed under a Creative Commons Attribution 4.0 International License.



